Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Life (Basel) ; 12(11)2022 Oct 27.
Article in English | MEDLINE | ID: covidwho-2090269

ABSTRACT

Various mutations have accumulated since the first genome sequence of SARS-CoV2 in 2020. Mutants of the virus carrying the D614G and P681R mutations in the spike protein are increasingly becoming dominant all over the world. The two mutations increase the viral infectivity and severity of the disease. This report describes an in silico design of SARS-CoV-2 multi-epitope carrying the spike D614G and P681R mutations. The designed vaccine harbors the D614G mutation that increases viral infectivity, fitness, and the P681R mutation that enhances the cleavage of S to S1 and S2 subunits. The designed multi-epitope vaccine showed an antigenic property with a value of 0.67 and the immunogenicity of the predicted vaccine was calculated and yielded 3.4. The vaccine construct is predicted to be non-allergenic, thermostable and has hydrophilic nature. The combination of the selected CTL and HTL epitopes in the vaccine resulted in 96.85% population coverage globally. Stable interactions of the vaccine with Toll-Like Receptor 4 were tested by docking studies. The multi-epitope vaccine can be a good candidate against highly infecting SARS-CoV-2 variants.

2.
Science ; 378(6615): eabq5358, 2022 10 07.
Article in English | MEDLINE | ID: covidwho-2029459

ABSTRACT

Investment in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing in Africa over the past year has led to a major increase in the number of sequences that have been generated and used to track the pandemic on the continent, a number that now exceeds 100,000 genomes. Our results show an increase in the number of African countries that are able to sequence domestically and highlight that local sequencing enables faster turnaround times and more-regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and illuminate the distinct dispersal dynamics of variants of concern-particularly Alpha, Beta, Delta, and Omicron-on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve while the continent faces many emerging and reemerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century.


Subject(s)
COVID-19 , Epidemiological Monitoring , Pandemics , SARS-CoV-2 , Africa/epidemiology , COVID-19/epidemiology , COVID-19/virology , Genomics , Humans , SARS-CoV-2/genetics
3.
Sci Rep ; 11(1): 21632, 2021 11 03.
Article in English | MEDLINE | ID: covidwho-1500753

ABSTRACT

At Wuhan, in December 2019, the SRAS-CoV-2 outbreak was detected and it has been the pandemic worldwide. This study aims to investigate the mutations in sequence of the SARS-CoV-2 genome and characterize the mutation patterns in Egyptian COVID-19 patients during different waves of infection. The samples were collected from 250 COVID-19 patients and the whole genome sequencing was conducted using Next Generation Sequencing. The viral sequence analysis showed 1115 different genome from all Egyptian samples in the second wave mutations including 613 missense mutations, 431 synonymous mutations, 25 upstream gene mutations, 24 downstream gene mutations, 10 frame-shift deletions, and 6 stop gained mutation. The Egyptian genomic strains sequenced in second wave of infection are different to that of the first wave. We observe a shift of lineage prevalence from the strain B.1 to B.1.1.1. Only one case was of the new English B.1.1.7. Few samples have one or two mutations of interest from the Brazil and South Africa isolates. New clade 20B appear by March 2020 and 20D appear by May 2020 till January 2021.


Subject(s)
Genome, Viral , SARS-CoV-2 , Whole Genome Sequencing , COVID-19 , High-Throughput Nucleotide Sequencing , Humans , Pandemics , Phylogeny
4.
Science ; 374(6566): 423-431, 2021 Oct 22.
Article in English | MEDLINE | ID: covidwho-1483977

ABSTRACT

The progression of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in Africa has so far been heterogeneous, and the full impact is not yet well understood. In this study, we describe the genomic epidemiology using a dataset of 8746 genomes from 33 African countries and two overseas territories. We show that the epidemics in most countries were initiated by importations predominantly from Europe, which diminished after the early introduction of international travel restrictions. As the pandemic progressed, ongoing transmission in many countries and increasing mobility led to the emergence and spread within the continent of many variants of concern and interest, such as B.1.351, B.1.525, A.23.1, and C.1.1. Although distorted by low sampling numbers and blind spots, the findings highlight that Africa must not be left behind in the global pandemic response, otherwise it could become a source for new variants.


Subject(s)
COVID-19/epidemiology , Epidemiological Monitoring , Genomics , Pandemics , SARS-CoV-2/genetics , Africa/epidemiology , COVID-19/transmission , COVID-19/virology , Genetic Variation , Humans , SARS-CoV-2/isolation & purification
5.
Biochim Biophys Acta Mol Basis Dis ; 1867(8): 166154, 2021 08 01.
Article in English | MEDLINE | ID: covidwho-1209165

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome-2 (SARS-CoV-2) exhibits a broad spectrum of clinical manifestations. Despite the fact that SARS-CoV-2 has slower evolutionary rate than other coronaviruses, different mutational hotspots have been identified along the SARS-CoV-2 genome. METHODS: We performed whole-genome high throughput sequencing on isolates from 50 Egyptian patients to see if the variation in clinical symptoms was related to mutations in the SARS-CoV-2 genome. Then, we investigated the relationship between the observed mutations and the clinical characteristics of the patients. RESULTS: Among the 36 most common mutations, we found two frameshift deletions linked to an increased risk of shortness of breath, a V6 deletion in the spike glycoprotein's signal peptide region linked to an increased risk of fever, longer fever duration and nasal congestion, and L3606-nsp6 deletion linked to a higher prevalence of cough and conjunctival congestion. S5398L nsp13-helicase was linked to an increased risk of fever duration and progression. The most common mutations (241, 3037, 14,408, and 23,403) were not linked to clinical variability. However, the E3909G-nsp7 variant was more common in children (2-13 years old) and was associated with a shorter duration of symptoms. The duration of fever was significantly reduced with E1363D-nsp3 and E3073A-nsp4. CONCLUSIONS: The most common mutations, D614G/spike-glycoprotein and P4715L/RNA-dependent-RNA-polymerase, were linked to transmissibility regardless of symptom variability. E3909G-nsp7 could explain why children recover so quickly. Nsp6-L3606fs, spike-glycoprotein-V6fs, and nsp13-S5398L variants may be linked to clinical symptom worsening. These variations related to host-virus interactions might open new therapeutic avenues for symptom relief and disease containment.


Subject(s)
COVID-19/virology , Mutation , SARS-CoV-2/genetics , Adolescent , Adult , COVID-19/epidemiology , COVID-19/pathology , Child , Child, Preschool , Egypt/epidemiology , Female , Frameshift Mutation , Genome, Viral , Humans , Male , Middle Aged , Sequence Deletion , Severity of Illness Index , Spike Glycoprotein, Coronavirus/genetics , Young Adult
6.
J Adv Res ; 30: 123-132, 2021 05.
Article in English | MEDLINE | ID: covidwho-943270

ABSTRACT

Introduction: The novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread throughout the globe, causing a pandemic. In Egypt over 115,000 individuals were infected so far. Objective: In the present study, the objective is to perform a complete genome sequence of SAR-CoV2 isolated from Egyptian coronavirus disease (COVID-19) patients. Methods: Nasopharyngeal swabs were collected from 61 COVID-19 patients who attended at National Cancer Institute, Kasr Al-Aini Hospital and the army hospital. Viral RNA was extracted and whole genomic sequencing was conducted using Next Generation Sequencing. Results: In all cases, the sequenced virus has at least 99% identity to the reference Wuhan 1. The sequence analysis showed 204 distinct genome variations including 114 missense mutations, 72 synonymous mutations, 1 disruptive in-frame deletion, 7 downstream gene mutations, 6 upstream gene mutations, 3 frame-shift deletions, and 1 in-frame deletion. The most dominant clades were G/GH/GR/O and the dominant type is B. Conclusion: The whole genomic sequence of SARS-CoV2 showed 204 variations in the genomes of the Egyptian isolates, where the Asp614Gly (D614G) substitution is the most common among the samples (60/61). So far, there were no strikingly variations specific to the Egyptian population, at least for this set of samples.


Subject(s)
COVID-19 Nucleic Acid Testing , COVID-19/virology , Genome, Viral/genetics , RNA, Viral/isolation & purification , SARS-CoV-2/genetics , Adult , COVID-19/epidemiology , Egypt/epidemiology , Female , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL